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Abstract

Novel text-to-speech systems can generate entirely new voices
that were not seen during training. However, it remains a diffi-
cult task to efficiently create personalized voices from a high di-
mensional speaker space. In this work, we use speaker embed-
dings from a state-of-the-art speaker verification model (Speak-
erNet) trained on thousands of speakers to condition a TTS
model. We employ a human sampling paradigm to explore
this speaker latent space. We show that users can create voices
that fit well to photos of faces, art portraits, and cartoons. We
recruit online participants to collectively manipulate the voice
of a speaking face. We show that (1) a separate group of hu-
man raters confirms that the created voices match the faces, (2)
speaker gender apparent from the face is well-recovered in the
voice, and (3) people are consistently moving towards the real
voice prototype for the given face. Our results demonstrate that
this technology can be applied in a wide number of applica-
tions including character voice development in audiobooks and
games, personalized speech assistants, and individual voices for
people with speech impairment.
Index Terms: voice, personalization, speech, avatar, charac-
ters, human-computer interaction

1. Introduction
In the last few years, multi-speaker text-to-speech (TTS) mod-
els have been proposed that can create entirely new high-quality
voices [1, 2]. While these approaches can generate unique
voices that are distinct from voices seen during training, it is
unclear how to create a personalized voice that fits one’s own
mental representation. The existence of such a tool would open
the door to numerous creative and practical applications, such
as developing customized voices for digital agents and robots,
personalized speech assistants, bringing fictional characters or
paintings to life, or developing individualized voices for speech
impaired people.

Here we use humans to search the speaker latent space in a
trained TTS model that uses speaker embeddings from a state-
of-the-art speaker verification model [3]. This allows partici-
pants to efficiently find voices that match their perception of
faces in realistic photographs, art portraits and cartoons. Sub-
jective evaluations from an independent group of human raters
confirm that the created voices match the faces.

Audio samples and the supplementary figure can be found
here: https://polvanrijn.github.io/VoiceMe/ All code is here:
https://github.com/polvanrijn/VoiceMe

2. Background
Previous human-in-the-loop approaches have shown that hu-
mans can iteratively build feature representations for person-
alizing sound and speech. For example, Ritschel et al. [4] used
an interactive evolutionary algorithm to allow users to create
sounds that express intentions and emotions for a social robot.
Van Rijn et al. [5] used an adaptive method to sample from
latent semantic human representations [6] to find prototypes of
emotional speech by adapting the latent representation of a GST
Tacotron model [7].

In the past years, various approaches have been proposed
to create novel voices. Jia et al. [1] demonstrated that an
independently trained speaker encoder network trained on a
speaker verification task is able to produce useful conditioning
for a multi-speaker text-to-speech model. By sampling random
points from the obtained speaker embedding space, the authors
generated fictitious voices that were not seen during the train-
ing. Another approach was proposed by Stanton et al. [2] that
does not rely on transfer learning from the speaker verification
task, but jointly learns a distribution over speaker embeddings,
also allowing for sampling a novel voice. However, all of these
papers focus on speaker generation, but not on speaker person-
alization. To our knowledge, this is the first paper using speaker
generation models for voice personalization.

In the present paper, we adopt the method proposed by
Jia et al. [1] and used embeddings from a speaker verifica-
tion network as speaker representation: because they can be
trained on noisy speech of thousands of speakers, do not require
transcripts, can extract speaker embeddings for unseen voices,
and the obtained voice prototypes can be reused in future mod-
els if trained on the same pretrained speaker verification net-
work. While this work use this particular state-of-the-art ar-
chitecture for voice synthesis (Figure 1A), our human-sampling
approach (Figure 1B) can be extended to work with a large class
of speaker generation models so that they can be used for voice
personalization.

3. Methods
3.1. TTS Architecture

Here, we use a modified version of the state-of-the art TTS
model VITS [8]. VITS is an end-to-end architecture with
the following components (see Figure 1A): (i) text frontend
composed of text normalization followed by a grapheme-to-
phoneme model utilizing IPA characters (International Phonetic
Alphabet) [9], (ii) transformer-based Text Encoder with a pro-
jection layer used to construct prior distribution, (iii) Normaliz-
ing Flow greatly improving the flexibility of prior latent space,
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Figure 1: Overview. (A) The architecture used in this paper is a modified version of the VITS model using SpeakerNet and GST
embeddings. (B) Participants move a slider adjusting a single dimension of the voice. The same slider is presented to three participants.
The mean answer is passed to the next iteration. This allows us to gradually optimize the voice which fits to a face over the course of
iterations. (C) Image materials. Images are extracted for all speakers in the RAVDESS corpus. We use deep-learning style-transfer to
convert the images to cartoons and paintings.

(iv) convolutional Posterior Encoder, (v) Monotonic Alignment
Search (MAS) and Stochastic Duration Predictor (SDP) mod-
ules learning to align input characters to encoded spectrogram
frames, (vi) high-fidelity GAN vocoder based on the HiFi-GAN
[10] architecture.

We use the pretrained speaker verification network
SpeakerNet-M [3] as speaker embeddings. The model was
trained on 7,205 speakers and has a satisfactory trade-off be-
tween the quality on a speaker recognition task and small com-
putational footprint. We furthermore found that SpeakerNet
mainly encoded voice pitch and timbre information and not
prosody. In order to learn prosodic variation, we extend our
model with a bank of Global Style Tokens (GST) [7], which ex-
tracts style embeddings from encoded spectrogram frames. We
initialized 16 Global Style Tokens, 8 attention heads and the
resulting embedding size was set to 256. As GST encoder an
8-layer convolutional network was used with the same architec-
ture as the Posterior Encoder. During training the speaker and
style embedding were separately L2-normalized and concate-
nated. During the experiments, we use the same zero embed-
ding to keep prosody approximately constant across samples.

To prevent the GSTs from learning speaker-dependent fea-
tures in presence of SpeakerNet embeddings, an additional ad-
versarial loss is proposed as follows. Alongside discriminators
a separate shallow feed-forward neural network is trained to re-
construct the speaker embeddings from extracted style embed-
dings. During the discriminator step, this network minimizes
a cosine distance between real and reconstructed speaker em-
beddings using cosine embedding loss: (1 − cos(x, x̂)). Con-
versely, during the generator step, the style extractor is penal-
ized if this network succeeded in reconstructing speaker embed-
dings – the loss function is then: (max(0, cos(x, x̂))). The full
architecture is depicted in Figure 1A.

We applied transfer learning from the publicly available
VCTK checkpoint1 and the training was continued using two
NVIDIA V100 GPUs. For the first 400k iterations only the
discriminators were allowed to train due to the lack of a pub-
lished discriminator checkpoint, then normal training continued
for additional 2M iterations with learning rate lowered to 1e-4.

3.2. Gibbs Sampling with People

‘Gibbs Sampling with People’ (GSP) is an adaptive technique
[6], where many participants collaborate to navigate a stimu-

1https://github.com/jaywalnut310/vits

lus space and identify regions associated with a given seman-
tic concept, in our case optimize voice parameters so that they
match a target face animation. The participants’ responses are
organized into sequences of iterations called “chains”. In each
trial, the participant is presented with a stimulus (a synthesized
voice) and a slider, where the slider is coupled to a particular
dimension of the stimulus space that changes from trial to trial.
The participant is instructed to move the slider to find the stimu-
lus most associated with the target face. In our implementation,
three different participants contribute trials for a given iteration
in a given chain, and their responses are averaged. The re-
sulting stimulus (based on the average response) is then passed
along the chain of participants, with each successive generation
of participants optimizing a different dimension of the stimulus
(Figure 1B). This procedure is repeated multiple times, cycling
through each of the dimensions of the sample space. Harrison
et al. ([6]) demonstrated that the emergent process corresponds
to a Gibbs sampler that maps the relationship between the tar-
get face and the participants’ internalized representations of the
corresponding voice parameters

In the current experiment, participants change the first ten
principal components of the SpeakerNet embeddings. Initial
piloting suggested that these principal components had the de-
sired property of intuitive interpretability (e.g., PC2 has a strong
gender effect), and prior research with related models suggested
that 10 principal components should be enough to achieve
meaningful control over the stimuli [6]. The principal compo-
nents were computed on SpeakerNet embeddings extracted on a
single utterance of the 45,825 speakers present in the train, dev
and test partitions of the English CommonVoice dataset [11]
and account for 25.4 % of the variance. The participants are
prompted to adjust a slider which corresponds to one principal
component to make the voice maximally similar to a face (see
Figure 1C for some of the faces). For practical reasons, every
slider contains a finite resolution of 31 equally-spaced slider
positions. As opposed to using static images, we use Wav2Lip
[12] to synchronize the lips to the voice so that the resulting
stimulus sounds more natural.

4. Materials
4.1. Stimuli

In order to compare the personalized voice with a ground truth
we extracted stills and speaker embeddings from recordings of
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Figure 2: Results. (A) Final speaker profiles on mean values for F0 and MFCC1–4. The shaded areas in all plots refer to 95%
confidence intervals. (B) Example profiles for speaker 8 at different iterations. (C) The Euclidean distance between consecutive
iterations is larger for earlier iterations compared to later iterations. (D) The Euclidean distance to the original reference drops over
the first ten dimensions and slightly increases and decreases. (E) The mean opinion score increases over the course of iterations.

real speakers. It was important to use speakers who are un-
known to the participants, because this might constrain possible
voices attributed to the face. We used the same neutral utterance
of all 24 speakers in the RAVDESS corpus [13].

To demonstrate our approach does not only work for real
faces, but also for fictional characters, we created for each orig-
inal image four fictional characters based on style transfer. We
used toonify [14] and three additional art portrait styles from
Ai Gahaku2: OR, EX3 and ROO or P00 (see example in figure
1C). We selected the images in the following way. We start by
creating 12 art portraits and one toonified version and then se-
lect four styles with the highest perceptual similarity to the real
photo [15] (see Figure 1C). Thus, we select toonify, OR, and
EX3 styles, but in 22 of 24 cases we select R00 and in all other
cases we select P00.

For all 24 speakers, we use the extracted images and four
styles with the highest perceptual similarity totaling 120 chains.
To each chain we randomly assign one of the 720 phonetically
balanced and semantically neutral Harvard sentences [16].

4.2. Participants

All participants were recruited from Amazon Mechanical Turk
(AMT) and provided informed consent in accordance with the
Max Planck Society Ethics Council approved protocol (appli-
cation 2021 42). Participants were paid $9/hour. Requirements
for participation include a minimal age of 18 years, 99% or
higher approval rate on at least 5,000 previous tasks on AMT,
residency in the US and wearing headphones [17]. Participant
recruitment was managed by PsyNet [6], an under-development
framework for implementing complex experimental paradigms.

2https://ai-art.tokyo

This framework builds on the Dallinger platform3 for experi-
ment hosting and deployment.

5. Results and discussion
5.1. Main experiment

180 US participants (69 female, 3 prefer not to say, 68 male)
engaged in the main experiment. The age ranged from 19 to 78
years old (M = 41, SD = 12). We terminated the experiment af-
ter 48 hours, after which 99 out of the 120 chains were full (22
iterations). In the last iteration, we obtain unique profiles for all
24 speakers (Figure 2A) and while each voice is randomly ini-
tialized, the profiles rapidly develop towards the final prototypes
(Figure 2B). Quantitatively, we show that the Euclidean dis-
tance between consecutive iterations within a chain decreases
over the course of iterations (Figure 2C), stabilizing toward the
final 15 iterations. This means that participants move the sliders
to a lesser extent at later iterations, suggesting convergence. We
also compared the created speaker embedding at each iteration
with the original speaker embedding of the real speaker. As we
can see in Figure 2D, the difference to the reference is dropping
for the first 10 iteration and then mildly increases and decreases
again.

5.2. Validation

In a separate validation experiment, participants (N = 110, 50
female, 1 prefer not to say, 59 male; age M = 35, SD = 10) rated
how well the voice matches the moving face on a 5-point Mean
Opinion Score (MOS): ‘Excellent’, ‘Good’, ‘Fair’, ‘Poor’, and
‘Bad match’. The validation included all stimuli generated in

3https://github.com/Dallinger/Dallinger
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Figure 3: Gender difference. (A) Generated speaker embeddings put into MDS space in which voices for male and female pictures
occupy increasingly distinct areas in the voice latent space. Each row represents two iterations, read from left to right, top to bottom.
(B) The pitch strongly increases for female faces and is lowered for male faces in the first ten iterations. The solid background reflects
common pitch ranges for the sexes. F0 is expressed in Hz. (C) In the final iterations the difference in the generated voice is smaller
within the different styles of the same face (purple), compared to a random same sex (green) or different sex face (yellow).

the first experiment, (overall 2,409 stimuli). Participants per-
formed 200 ratings per experiment and consequently on aver-
age every stimulus was rated 9.1 times. As depicted in Fig-
ure 2E, the average MOS increases over the course of iterations
for all styles. However, the increase is largest for the original
faces moving from a 2.7 MOS at iteration 0 to a MOS of 4.0
(‘Good match’) in the later iterations (Wilcoxon rank sum test,
Z = .42, p < 0.001, Bonferroni-adjusted). The trend is followed
by the cartoons (Wilcoxon rank sum test, Z = .18, p < 0.001,
Bonferroni-adjusted). For art portraits the improvement over it-
erations is smallest (Wilcoxon rank sum test, Z = .16, p < 0.001,
Bonferroni-adjusted).

5.3. Toward personalized voice characteristics

To further understand what kind of voice features were selected
by the personalization process, we visualize the speaker latent
space using Multi Dimensional Scaling on all voices created
in the experiment. As shown in Figure 3A, over the course of
iterations, male and female faces occupy increasingly distinct
areas in the voice latent space. Furthermore, the average pitch
starts at roughly the same point due to the random initialization
of the voices and over the course of iterations is lowered for
male and increased for female voices (Figure 3B). Voices for
males and females converge in a pitch range common for the
sex (85-155 and 165-255 Hz respectively) as indicated by the
shaded areas [18].

Based on these results, we can state that speaker gender ap-
parent from the face is well-recovered in the voice. However, do
people only focus on the gender or also on other characteristics
of the face? In order to address this question, we run another
analysis. Here, we compute the Euclidean difference between
the voices created for different styles of the same speaker ver-
sus a random speaker of the same sex. Using bootstrapping (n
= 1,000) we show that the voice differences within the same
speaker are significantly smaller compared to a voice of a ran-
dom speaker of the same sex (Figure 3C). The results show that
the voice prototypes can capture face-specific image features in
addition to gender.

5.4. Limitations and outlook

Since the ratings plateau at a MOS of 4 (“good match”) there
is still room for improving the match. One improvement would

be to also apply GSP on the prosodic style embeddings instead
of fixing the prosody by constraining a zero embedding on all
chains. Enforcing neutral prosody on all stimuli can negatively
affect intelligibility, which might be amplified by the fact that
participants should focus on the match between voice and face
and not the intelligibility of the speech.

Another approach to disentangle prosody could be to ini-
tially obtain the speaker embeddings from a speaker verifica-
tion network and at a later stage to learn them with the other
components of the model. This initialization with speaker ver-
ification embeddings can be a reasonable starting point. In the
present study, we used the first ten principal components com-
puted on the SpeakerNet Embeddings, but future research can
explore alternative parametrizations of the speaker latent space
that potentially better align with human perception and might
explain more variance or alternatively increase the number of
dimensions manipulated by the GSP procedure.

6. Conclusion
In this paper, we presented a human-in-the-loop approach for
generating speech personalized to a specific face. To this end,
we used an embedding space of a speaker verification network
as input to a state-of-the-art TTS model. The embeddings were
modified collaboratively by the use of a GSP experiment in or-
der to find voice that is consistent to shown images of realistic
faces, portraits and cartoon-style faces. Our evaluation showed
that the over the course of our experiment, the MOS of the gen-
erated speech, representing the consistency between the speech
and the shown faces, increased from 2.7 to 4.0. This indicates
that our approach is promising for synthesizing highly person-
alized speech for a specific speaker’s visual appearance. Taken
together our results open up a vast range of creative and prac-
tical applications including personalized voices in audiobooks
and games, personalized speech assistants, and individualized
voices for people with speech impairments.
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